Devoir de mathématiques

- Méthode de la tangente -

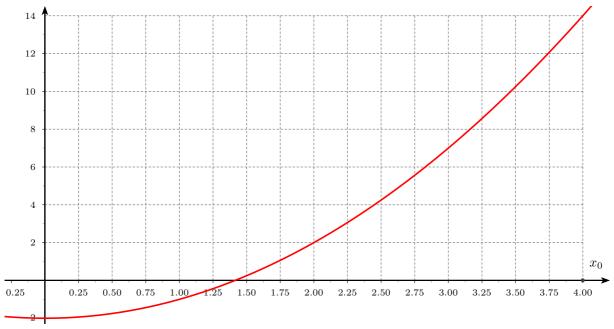
La méthode de la tangente (ou méthode de NEWTON) sert à déterminer une valeur approchée d'une racine d'une fonction f dérivable sur un intervalle dont on notera \mathcal{C}_f la courbe représentative dans un repère du plan. Sous certaines conditions, on peut prouver que l'on obtient une suite (x_n) qui converge très vite vers une solution de f(x) = 0.

Méthode de Newton :

- ① On part d'une valeur approchée x_0 de la solution.
- ② On trace \mathcal{T}_0 la tangente à \mathscr{C}_f au point d'abscisse x_0 .
- 3 Supposons que \mathcal{T}_0 coupe l'axe des abscisses en un réel noté x_1 .
- 4 Retour à l'étape 1 avec x_1 au lieu de x_0 , et on trouve x_2 . etc
- 1. On a tracé ci dessous la courbe de la fonction f d'expression $f(x) = x^2 2$. Quelle est la valeur exacte de la racine que l'on voit?
- **2.** On part de $x_0 = 4$. Déterminer par le calcul l'équation de \mathcal{T}_0 la tangente à \mathscr{C}_f au point d'abscisse $x_0 = 4$ et prouvez que $x_1 = 2, 25$.
- 3. Déterminer par le calcul l'équation de \mathcal{T}_1 la tangente à \mathscr{C}_f au point d'abscisse x_1 et en déduire x_2 .
- **4. a.** Complétez le graphique ci-dessous en traçant la suite de segments joignant les points de coordonnées $(x_0; 0), (x_0; f(x_0)), (x_1; 0), (x_1; f(x_1)), \ldots, (x_n; 0), (x_n; f(x_n)), (x_{n+1}; 0) \ldots$
 - **b.** Graphiquement, la suite (x_n) semble-t-elle converger?
 - **c.** Que se serait-il passé si on avait choisi $x_0 = 0$?
- **5.** \bigstar Toujours dans le cas où $f(x) = x^2 2$, et $x_0 \neq 0$ prouvez que : $\forall n \in \mathbb{N}$; $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$ OMG! On retrouve la suite de Héron d'Alexandrie connue depuis l'antiquité!!
- **6.** Application à la calculette. Après avoir entré la première valeur, que faut-il taper utilisant la touche Ans (ou Rép) pour obtenir les valeurs successives de la suite (x_n) ?
- 7. \bigstar Pour une fonction f et un x_0 quelconques auquels on applique la méthode de NEWTON.
 - a. Prouvez que pour tout $n \in \mathbb{N}$ on a la relation de récurrence :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

b. Quelle condition apparait avec cette formule pour que cette suite soit définie? On en donnera une interprétation graphique.



Bonus : Pour $f(x) = x^2 - 2$, prouvez que \mathscr{C}_f est au dessus de chacune de ses tangentes. (i.e. quel que soit le point d'abscisse a où on regarde la tangente).